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Two mixed problamm on the tormion of an elastic infinlts continuous circular cylinder 

loaded symmstrically with rsmpect to ita axh are l olved. In the first problem the dimplacs- 

ment on a finite portion of the swface of the cylinder and the l hear rtremr outside this area 
are given. The quantltiem given in the mecond problem are the mhear atream on a finite por- 

tion of the surface of the cylinder and the dlaplacement ontmide this area. In each cam 

both symmetrical and antimymmatrical deformation with rempect to a plane perpendicular 
to the axis of the cylinder are conmidered. 

In solving these prob1em.e we make use of a particular solution of the torsion equation 

for shaftm of variable croma section containing one arbitrary harmonic function, and of the 
method of difkrtintlating the boundary conditions. The solutlonm of the problems on the 

tormion of the cylinder are reduced to two types of dual integral equationm. Their molutlons 
are represented in the form of integrals containing an unknown function which is found from 
Fredholm’s integral equation of the second type with a symmetrical kernel. 

1. BO~~~~UO~ of the ~ltttlon of the hiOn equation. It is eaay to see that the 

toreion squatlon 

ia matiafied by the function 

(1.1) 

(I.21 

where 8 ia an arbitrary harmonic function. The formulam of Hooke’e law then give ue the 

628 
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following expremmionm for the otreaaeo 7rg, and 7q x : 

(1.3) 

We take the harmonic function 8 in the form of an improper integral, 

6 = TIo (hr) [A, (A) sin hz + A, (A) cos hzl d3L 
0 

(1.4) 

where A, (4 and A, (h) are unknown functiona that must be determined from the boundary 

conditions of the problem ; la (Xr) is a modified Beaael function of zero order. Subatitut- 

ing (1.4) into (1.2) and (1.3), we obtain 

v = +fal~ (hr) [A, (h) sin AZ + A, (h) cos hz] d3L 
n 
+cO 

z rep = G s h21, W) [A, (a) sin hz -I- A, (3L) cos hz] dh (1.5) 
0 

TZQ = G +~P& (hr) [A, (11) co9 hz - A, (h) sin AZ] dA 
0 

where I, (Ar) and I, (Ar) are Beaael functions and G ia the l hear modulus. Formulas (1.5) 

will be used below to solve boundary value problems on the toraion of an infinite circular 

cylinder. 

2. Method of differentiatloa of the boundary c~ndittloas. Let ua consider the mixed 

problem of elasticity theory for a symmetrically loaded l olid of revolution or for a solid in 
a state of plane deformation or plane strens. Let the slamtic solid under coneideration be 

bounded by the surface S. We assume that on aome portion SO of the aurfacs S we are given 

a boundary condition for the projection of the displacement vector. We denote this project- 

ion by v. The process of solving mixed boundary value problems of eluticity theory can be 
simplified substantially in some canen if the boundary condftion for v is replaced by a 
boundary condition for the partial derivative along the tangent. The boundary condition for 
v is satisfied to within a constant with the aid of the boundary condition for the partial 

derivative. Hence, the boundary condition for the partial derivative must be combined with 

a condition for v at some point of the area S 0. As the supplementary condition one cau 

stipulate that the principal vector and the principal moment stresses applied to the area So 

are equal to certain given values. 

This method will be used in the solution of the boundary value problems considered 
below. 

3. Representation of the solution of two types of dual Integral equations. The boundary 

value problems to be considered are reducible to the following dual integral equations : 

+CO 

[I - g @)I f PJ sin AZ d3L = F, (z) (0 < 2 < a) (3.1) 
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+CO 

s f (A) cos AZ dl. = F, (z) (a<z<+ ml 
0 

where f(h) la an unknown function, and g (h), F, (I), and F, (I) are given functions. We 

aaaumc that the function g (A) h as the following property: it is continuous in the interval 

0 <x<+w, the product X g (h) as X -+ 0 in finite, and there exists an a such that 

lim hP [kg (h) - al = 0 (O<P< i) (3.2) 
)i-u0 

The above condition will henceforth be referred to as ‘Condition A’. The function 

F, (I) is aaaumed representable by meana of a Fourier integral. 

S-J * 

F, (2) = 
s 

f a (A) cos hz dk, fa (A) = -$ \ F, (z) cos hzdz (3.3) 

0 a 

By introducing the new unknown function 

fl (A) = f (A) - fz 04 
we aee that by virtue of (3.3) equations (3.1) may be reduced to 

(3.4) 

+ 

s [I - g (Ql fi (V sinkz d3L = F (z) (0 < z < a) 
0 (3.5) 

+m 

s 
fl (A) cos AZ d3L = 0 (a<z<+w) 

0 

where 

+03 

F (z) = F, (z) - s 
[I - g (A)] fz (A) sin hzdh (3.6) 

0 

We seek a solution of the dual integral equations (3.5) in the form 

fl (a) = 5 t%p (t) Jo (At) dt 
0 

(3.7) 

where 9 (t) is the new function sought. Then by virtue of the integrals 

SW s Jo (At) sin A.2 CIA = O’ 
if z<t 

0 
(zz- t2)+, if x > t 

+- 

1 Jo (ht) cos AZ d3L = { r - Zaf”s ;: f> I< t 

(3.8) 

0 

the second equation of (3.5) is satisfied identically. Following the procedure employed in 
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[I] we rewrite the first equation of (3.5) as 

T 
ft (A) sin hzdh = F, (z) (0 < z < a) 

0 

where 

F, (z) = F (4 + +rg (A) fl (A) sin AzdA (3.10) 
0 

(3.9) 

Assuming the right-hand side of equation (3.9) to be a known function, we substitute 

into it function (3.7) and once again make use of integral (3.8). Equation (3.9) is thereby 

reduced to the Schloemilch equation [2] 

2 ’ t’/’ q, (t) dt 

-T s o )/er, 
(0 < z < 4 

whose solution ia of the form 

[F3 (0) + t 1 F,’ (t sin 0) de] 
0 

(3.11) 

(3.12) 

Substituting (3.10) into (3.12) and applying the equation 

we obtain 

‘la = 

Jo (ht) = +- \ cos (ht sin 0) &I 
0 

where 

x (0 = Ap (0) + t”in F’ (t sin 0) de] 
a I/t 

0 

(3.14) 

Further, substituting (3.7) into (3.13) we obtain an integral equation that may be used 

to find o(t), 

where 

cp (0 = fK (t, $ cp (4 df + x (t) 
0 

+m 

(3.15) 

K (t, z) = (tz)‘” \ hg (h) J, (At) Jo (A4 dh 
(3.16) 

0 

We combine the resulting solution (3.7) of the nonhomogeneous equations (3.5) with 

the solution of the homogeneous equations. We attempt to find a solution of equations (3.5) 

for F (I) = 0 of the form 
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fr (A) = co [Jo (ha) + fs (VI (3.17) 

whore C,, ia an ubitmry conetent and /, (h) im an unknown function. Submtituting (3.17) 

into (3.5) we see that the function f, (A) muet l tlefy the nonhomogeneous equations (3.5) 

with the tight-hand aide 

HOD00 

4 (4 = s g (I.) Jo (ha) sin AZ dA 
0 

(3.18) 

f* (M = jfY30 0) Jo (W dt (3.19) 
0 

whore cp (t) 1m found from the integral equatlon (3.151, (3.16) with absolute term (3.141, 

where the function F (I) maat be replaced by funotion (3.13). Thus, by virtue of (3.41, 

(3.71, (3.31, (3.171, and (3.191, the l olotion of the lnitfal integral equations (3.1) is given 

by the formula 

(3.20) 

f (h) = Cd,, (ha) + [ t% IT (t) + C,q+, @)I J, (At) dt + -$ +r F,(z) cos hz dz 
b a 

where the functions Cp (t) and cpo (t) are found from the integral equation (3.151, (3.16). The 

absolute term X (t) of equation (3.15) for finding the function 9 (t) is given by formulas 

(3.14) and (3.16) ; the absolute term X(t) for finding Cpo (1) im given by formula (3.14), 

where the function F (I) mumt be replacsd,by F, (I) as obtained from formula (3.13). 

It can be l hewn that if the fun&on g (h) porass~es the property A, the kernel (3.16) 

in a function rammed with l mqumre in the rectangle 0 < t < a, 0 < z < a. In addition, it 

ia a function continuous in the large [3]. If a = 0, then the kernel (3.16) is continuous on 

the aforementioned rectangle. Hence, if the functions F, (I) and F, (2) are such that the 

rbaolute term X (t) in a function summed with a square on [0, a], then equation (3.15) is 

a Fredholm integral equation of the second kind with a symmetrical kernel. If X (I) is 

continaoum in the interval [O,o], the solution of integral equation (3.15) is continuous in 

that interval [3]. If g (h) pe~~~esmea the property A and the solution of integral equation 

(3.15) is a function of restricted variation, it can be shown+ that all operations involving 

alteration of the order of integration, taking of limits, and differentiation under the integral 

sign carried out above are valid, and that the solution of the Schloemilch integral equations 

(3.11) has a continuous derivative [!z] on [0, a]. 

We might point out that a formally different representation of the solution of non- 

homogeneous dual integral equations (3.1) is given in [4, 51 for the case F, (2) = 0. 

The dual integral equations 

l The proof im omitted in view of its cumbermome character. 
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SW 

s [I - g (A)] hf (h) cos hz dh = @ (z) (0 < % < a) 
0 

+m s f (A) cos hzdh = F, (z) (a<z<+m) 
0 

may be reduced to 

first equation from 

integral equationa (3.1) considered above by formally integrating the 

0 to I and introducing the notation 
z 

s ’ CD (t) dt = F, (z) 
0 

We next consider some dual integral equations of the second type, 

+=J 

s 11 - g @)I f (V sin hzdh = F, (z) (0 < 2 < a) 

0 

+@J 
(3.21) 

s 
hf (h) sin hzdh = F, (z) (a<z<+m) 

0 

By similar reasoning we deduce that the solution of these equationa ia given by the 

formula 

f (A) = [ i”q (t) Jo (At) dt + 2’s” F, (z) sin hzdz 

0 a 

(3.22) 

where the function Cp (t) la found from an integral equation with a symmetrical kernel, 

‘p 0) = \ K (t, 4 cp (4 dr + x (t) (0 < 2 Q h) (3.23) 

i, 

K (t, z) = (tr)'"+r lg (h) J, (hz) J, (it) dh (3.2 “1 

(h) AZ (A) J, (At) di (3.25) 

sin hz dz (3.26) 

-I 

(3.27) Q (t) = iii[F1 (z) - (~)“‘+~k-“M (A) ‘sin hzdiJ -j- 

0 

+ t \ (t’- zp-g [F1 (z) - (fj”+fk (A) !!!!$ d?v]dr 

0 0 
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If g (h) possesses the property A and the functions F, (I) and F,(r) are such that the 

absolute term (3.25) is s fnnction summed with a square in [0, (I], then equation (3.23) is a 

Fredholm equation. 

A special case of dual equations (3.21) is considered in [6]. 

4. The first problem of a cylinder lo tomion. Symmetrical case. Let us consider a 

mixed boundary value problem on the symmetrical torsion of an elastic cylinder 

O<r<R, - 00 < z < + co Wig. 1). 

We are given the displacement v (R, I) in the interval - o < x < o of the side 

surface r = R and the tangential stresses T ,,,,(R, ) I on the remaining portion of the side 

surface of the cylinder. The general torsion problem we are about to consider is a com- 

bination of two special cases : 1) symmetrical loading of the side surface relative to the 

plane I = 0 (Fig. 1) 2) antisymmetrical loading relative to the plane z = 0. 

FIG. 1 

We first solve the problem for the 

symmetrical case, mathematically formul- 

ated as follows: we are required to find 

the function v (r, I) which satisfies the 

differential equation (1.1) inside the 

cylinderO,<r(R,-m<z<+ooandthe 

conditions 

a=$ (2) for r=R, --a<z<a 

rro = Q (2) for r = R, o<lzl<fc= 

(4.1) 

(4.2) 

on its surface. 

I+$ (I) and q (I) in these expressions are even functions ; the projection of the moment 

on the zaxia mast equal zero 

so0 

‘SaXFP 
s 

zre (I?, 2) dz = 0 (4.3) 

0 

If the cylinder ia fixed in the interval - a < z < a of the aide surface, then I+$ (z) = 0. 

The function q (I) is considered representable as a Fourier integral, 

q (2) = $q, (A) co9 hzdaa, 
$-co 

q1 (A) = 4 \ q (z) cos AZ dz (4.4) 

a a 

We attempt to solve the problem posed in the form of formulas (1.51, setting 

A, (I.) = 0 (4.5) 

Instead of boundary condition (4.1) we consider the boundary condition for the partial 

derivative 
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avl dz =I& (2) for r = R. -a<2<a (4.6) 

Satisfying boundary conditions (4.6) and (4.2). we obtain the following dual intagal 

equations in the function A, (A) : 

+a0 s aaA, (A) 11 W-U sin AZ dh = 9 (z) (0<2<4 
0 

T 
= i&q (4 

(4.7) 

h*A, (h) I, (I&) cos AZ dk (a<z<+4 
0 

If we set 

F, (4 = 9’ (4 F, (4 = + q (4 

II (W (4.8) 
1 - g (A) = +#, g (h) = 1 - - 

12 WV 

equations (4.7) reduce to the form (3.1). Hence, by virtue of (3.20). their solution bn given 

by the formula 

i 

A2 (‘) = h-U,(JvR) (Cd, @a) + f t”’ [cp @I + Co’po (01 Jo (W dt + 12 (A)} (4.9) 

0 

where Cp (t) and Cpo (t) are found from integral equation (3.15). (3.16) and (3.14). The 

function F (2) appearing in the expression for the abaolnte term (3.14) for finding Cp (t) has 

the form 

F (z) = q’ (z) - 
+OO II (?LR) 
s 

II .t2 (I) sin Lzd3L 
0 

for finding (PO (t) it may be written as 

F (z) = Tg (A) Jo (ha) sin hz dA 

0 

where g (A) is given by formula (4.8). and 

fs (A) = ;+” q (z) cos AZ dz (o<?b<+w) (4.10) 

a 

It is easy to ehow that 

li&lhg(&) = -;, ;\lim_ hP[hg (h) + 2&] = 0 (O<P<i) 

’ I.e., the function g (h) possesses the property A. Thae, the kernel (3.16) in this problem 
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18 a Fmdholm kernel. 

Let na find the distribution of the otreases 7,(p on the fixed segemsnt - a < I < a 

of the aide anrface. By virtue of (4.5), expreaoions (1.5) yield 

+oo 

%re (R, z) = G 
c 

hr~, (A) I, (AJ?) cos AZ dk 

‘0 

(4.11) 

Sabstltating (4.9) into (4.11) and making use of integral (3.8) and the inversion formula 

for (4.10), wa obtafn 

+n (R 4 = t”’ iv;)++, tt)l &) (- a < z < a) (4.12) 

Hanca, the shear atreamw on the fixed portion of the side surface may be expreased 

dfreotly in tenua of rho fnnctions Cp ft) and ‘pu (t). Clearly, the shear stresses Trq become 

Infinite at the points x - f o of the side surface. Their distribution law is close to the 

diatrfbution law for normal atrrsses under a die [7]. 

In order to complete the aolotion of the problem, we must determine the constant Cu. 

We can find it asing equilibrium condition (4.31, which together with boundary condition 

(4.6) is sqdvaleat to boundary condition (4.1). Subatitnting (4.12) and (4.2) into (4.3) and 

compstiag the integrala, we obtain 

C,[i + jf”lp, (t) d+= - {t%lp (t) dt - M, iwR*G (M~=~JCR~+~~(Z)~Z) 
0 0 a 

where A4k is the torsional moment comprised of external atresees (4.2) applied to the side 

surface of the cylinder. 

5. The Urat problem of a cylinder La tomLott. Anttmmmetrical problem. Let us write 

out the boandary conditions of the problem, assuming that the segment - a < I < a of the 

side anrface is fixed (Fig. 2) : 

v=o for r = R, --4<z<a 
(5.1) 

t - F, (2) for ro - r=R, a<lzl<+m 
(5.2) 

I 
where F, (11 is an odd function. The shear 

---- 
stresses applied to the segment of the 

side surface extending from a to + 00 

FIG. 2 

Mk 

Th; function F, (I) ia assumed 

produce the torsional moment 

+CQ 

= 2rcR” 
s F, (4 dz 
a 

to be representable as a Fourier integral, 
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F, (4 = ‘s’ fz (V sin kz dh, F, (z) sin AZ dz tsa3) 

0 a 

Clearly, 

+m 

5 fz (A) sin AZ. d3L = 0 (0 < 2 < a) 
0 

(5.4) 

We attempt to solve this problem in the form of formulas (1.51, where we set 

As (h) = 0 (5.5) 

Satisfying boundary conditions (5.1) and (5.2), we obtain dual integral equations In 

the unknown function A, (A), 

+r AA, (A) I, (Al?) sin Az dh = 0 (O<z<4 
;I 

G+%A, (a) I, (hR) 

(5.6) 

c 
sin AZ d3\ = F, (z) (a<r<+-1 

0 

If we set 

f (A) 
A1 @) = %hZa (hR) ’ 

I104 - = 1 -g(h) 
1% (hR) 

(5.7) 

equations (5.6) are reduced to the form (3.21) for F, (z) = 0. By virtue of (3.221, their 

solution is therefore given by the formula 

1 
A1 (‘) = Chlz (AR) 

[\ t’@ (t)Jo (ht) dt + 2 ‘rF2 (z) sin hzdz] 6.8) 

0 a 

where ‘p (t) is found from the integral equation (3.23). (3.241, and (3.25). Since the function 

g (h 1 given by formula (5.7) coincides with function (4.8). kernel (3.24) is a Fredholm 

kernel. 

Let us find the distribntion of shear stresses 7r(p on the fixed segment 0 < z < a 

of the aide surface. To this end, we transform expression (5.8) using (5.3) and the formula 

We obtain 
1 

~ A1 (‘) = a21a (LR) a”T (u)J, (ha) - 
(5.9) 
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0 

- U t’kp’ (t) - $ t-“9 (t)]Jt (W dt + fa (h)} 
0 

(5.9) 

Subetituting (5.9) into expression (1.5) for r 
‘9 

and taking into account (5.4) and (5.5). 

we obtain 

= T,rc(B, 2)’ ;*-q t’kp’ (t) - $ t-‘/q (t)] t vc--a (0 < 2 < 4 
I 

where we have made use of the integral 

+- 

s .I1 (At) sin hzdh = I z*t-‘(t’-z~)-l~~, if o<z<t 

0 
0, if t<z<+oo 

Clearly, the ahear stresses become infinite at the point I = fa of the mida muface. 

6. The aecoad problem of a cylhder fn torsion. Symmetrical case. Let the shear 

l trsmaes7,(p(R, 1) be gi ven on the segment - a < I < a of the aide surface of the cylinder 

(Fig. 3); the dimplaoement v (R, I) is given on the remaining portion of the side surface. 

In the general carno thim problem im a combination of the symmetrical and antisymmetrical 

canea of loading of the aide anrface relative to the plane I - 0. 

The boundary conditions for the symmetrical case may be written as 

% = q (z) for r=R, --a<z<a 

u = F, (2) for r=R, u<~zI<+w 

(6.1) 

(6.2) 

where q (I) and FI (;I are even functions. The projection of the moment on the r-axis must 

equal xero, 

&CA’7 up (R, z) dz = 0 
0 

The function F, (2) is conmiderad to be representable am a Fourier integral, 

F, (z) = 7 fa (A) cos hz dh, fa (I.) = $ ‘sp F, (z) cos hzdz (6.3) 

0 a 

We attempt to solve the problem in the form of formula0 (1.5). where we met A, (h) = 0. 

Satimfying boonduy conditiona (6.1) and (6.21, we obtain dual integral equation for 

finding the unknown function Al (A), 

G T haAA, (1) Ia (wi) cos hz dh = q (4 P<z< 4 
0 

+a 

s 

(6.4) 
AAz (A) 11 (W cos hz dh = Fs (z) (a<z<+ ml 

0 
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By integrating the ffrst of these equations born 0 to I and setting 

I¶ (AR) 
g(h) = 1 - - 

II(hR) ’ 
(6.5) 

0 

we reduce equation (6.4) to the form (3.1). Their solution is given by formula (3.20). 

Setting Co= 0 in formula (3.20). we obtafn the following expression for the solution 

of equations (6.4) : 

where cp (t) is found from integral equa- 

tion (3.15). (3.161, and (3.14)). The f&c- 

tion F (I) l ppearfng in the absolute term 

(3.14) may be written as 

FIG. 3 z 

P(z)=~~g(z)dz- 
0 

- s 
0' 

$$- f3 (h) sin hz dh 

where fr (h) is given by formula (6.3). 

It is easy to show that 

liiAg(h)=-&, ~li~?bP[hg(h)---&-]=O (O<P< i) 
-b 

i.e., the function g (A) possesses the property A. Kernel (3.16) in this problem is therefore 

a Frsdholm kernel. 

Let us find the distribution of ahaar stresses on the side surface in the case whsra the 

side surface outside the segment - o < a < a is fixed. In thin case Fr (a) - 0, and by virtue 

of the identity 

AJ, (At) = ‘v + f J1 (At) 

formula (6.6) is easily reduced to the form 

(6.7) 

where 
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Substituting (6.7) into expression (1.5) for 7,,, we obtain 

Slr +? 

G, (R, 2) = &;z~a$za _ aal -G ” ! g (A) hf (A) ~0s Fdh + 

a t {t-“vp (t) - [P’qJ (f)]‘} +GS J&r- - - ta [Z + VZZ - fa] 
dt (a<z<+ ml 

0 

where we have used the integral 

+? 

s 
J1 (At) cos hzdh = 

0 

The functions g (A) and f(h) are given by formulas (6.5) and (6.6). 

7. The second problem of a cylinder in Lorelon. ,Antisymmetrical case. The boundary 

conditions of this problem may be written as (Fig. 4) 

z rq = q (2) for r=R, -a<z<a 

u= h (z) for r=R, u<lzl<+m 

(7.1) 

(7.2) 

where q (2) and h (z) are odd functions. We assume that the derivative h’ (z) = ~z (z) is 

representable aa a Fourier integral, 

FIG. 4 

We attempt to solve this problem in the form of formulas (1.51, where we set 

A, (A) = 0 

Instead of boundary condition (7.2) we consider the boundary condition for the partial 

derivative 

&I -=~‘(z)=F~(z) for r=R, n<\z]<+m 
az 

(7.41 

and the additional condition 

u = (R, zo) = h (q,) (10 > 4 (7.51 

which conaiats in the equality of the displacement u (r, z 1 being sought to its given value 
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at some point z,, > a of the side surface r = R. Conditions (7.4) and (7.5) are clearly 

equivalent to boundary condition (7.2). 

Satisfying boundary conditions (7.1) and (7.4), we obtain dual integral eqoations for 

finding the unknown function A, (h), 

G+a)haAl (I.) I, (Al?) sin hzdA = q (z) s (0<%<4 

0 
-b 

s ABA, (h) I, (AR) cos hzdh = F, (z) (a<z<+-1 

0 

These equations may be reduced to the form of equations (3.1) by setting 

Ia (AR) - = 1- g(a), 
I1 (AR) +- q (4 = F, (2) (7.6) 

For this reason their solution (by virtue of (3.20), (7.4), and (7.3)) is given by the 

formula 

where Cu is an arbitrary constant. The functiona Cp (t) and ‘p. (t) are found from integral 

equation (3.X), (3.16) , and (3.14). The function F (I) appearing in the expresaion for the 

absolute term (3.14) for finding cp (t) may be written as 

for finding To (r) we have the expression 

F(z) =~g(A)Jo(Au)sinAzdA, F(0) = 0 

where g (A) and fa (A) are giv:n by formulas (7.6) and (7.3). 

The functions g (A) as expressed by formulas (7.6) and (6.5) coincide. This means 

that kernel (3.16) of integral equation (3.15) in this problem is a Fredholm kernel. 

The constant Co may be determined from condition (7.5). Substitating the vahe of 

A, (A) given by formula (7.7) into expression (1.5) for u (r, x), and then u (r, x) into equa- 

tion (7.5). we obtain the following expression for Cs: 

(7.8) 
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= -$ h ( zo) - \ t’hp (t) dt - -$ jw h-If, (A) sin hz,dh 
0 0 

(7.8) 

where we have osed the integral 

-I- 

s A-‘Jo (At) sin hz dh = q (O<t<z) 
0 

Any nomber luger than a can be taken as 26 in formola (7.8). 

Let on quote the formula for the distribution of shear stresses on the segment 

a < I < + DO of the aide surface of the cylinder for the special case of the boundary condi- 

tions of the problem being considered. Namely, let 

h(z) = { 
ho, if a<z<+m 

-ho, if --oo<z<-a 

It ia then easy to show that 

- C ‘O” g (A) f (A) sin hzdh 
s 

(a<z<+-) 
0 

where f(h) and Co are given by formalan (7.61, (7.71, and (7.81, where 

fa (A) = 0 

We note in conclnafon that the aame method may be need to solve 

involving the torsion of a hollow cylinder. 

BIBLIOGRAPHY 

analogous problems 

Pupyrev, V.A. and Ufliand, IaS., Nekotorye kontaktnye zadachi dlia uprugogo sloia 

(Some contact problems for an elastic layer). Prikladnah matsmotiko i msckhaniko, 
Vol. 24, No. 4, 1960. 

Whittaker, E.T. and Watson, G.N., Modern Analysis. Cambridge (England), Cambridge 

University Press, 1952. Gostekhizdat, 1933, Part 2, p. 314. 

Mlkhlin, S.G., Laktrii po Ikainym integrarnym uravnaniiom (Lectures on l&war integral 
rquotionv). Firmatgiz, 1959, p. 102. Delhi, Hindustan Publishing Corp., 1960. 

Prlvarnikov, A.K., Slmmetrichnaia kontaktnaia zadacha dlia eloia konechnoi tolshchiny 

(A symmetrical contact problem for a layer of finite thickness). Dopovydy AN UkrSSR, 
No. 3. 1963. 



Injinitc elastic cylinder torsion 643 

5. Markuzon, I.A., Ravnovesie treshchiny v polose konechnoi shiriny (Eqnilibrinm of a 

crack in a strip of finite width). Prikladnaio matamatiko i tekhnichcskaia jizika, NO. 5. 
1963. 

6. Kotliar, S.M., 0 napriazhennom sostoianii beskonechnoi polosy (The stressed state of 

an infinite strip). Izucstiio WZOU, Motemotiko, No. 1, 1964. 

7. Lebedev, N.N. and Ufliand, IaS., Osesimmetrichnaia kontaktnaia zadacha dlia uprogogo 

sloia (An axisymmetric contact problem for an elastic layer). Prikladnoia motcmotiko i 
mekhaniko, Vol. 22, No. 3, 1958. 

Translated by A.Y. 


