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Two mixed problems on the torsion of an elastic infinite continuous circular cylinder
loaded symmetrically with respect to its axis are solved. In the first problem the displace-
ment on a finite portion of the surface of the cylinder and the shear stress outside this area
are given. The quantities given in the second problem are the shear stress on a finite por-
tion of the surface of the cylinder and the displacement outside this area. In each case
both symmetrical and antisymmetrical deformation with respect to a plane perpendicular

to the axis of the cylinder are considered.

In solving these problems we make use of a particular solution of the torsion equation
for shafts of variable cross section containing one arbitrary harmonic function, and of the
method of differentiating the boundary conditions. The solutions of the problems on the
torsion of the cylinder are reduced to two types of dual integral equations. Their solutions
are reprosented in the form of integrals containing an unknown function which is found from
Fredholm’s integral equation of the second type with a symmetrical kernel.

1. Representation of the solution of the torsion equation. It is easy to see that the
torsion equation

v B[4 2 _
| )] =0 (L)
is satisfied by the function
a8 028 1 98 0%
= (G ++ 5 Taa=0) 1.2

where 8 is an arbitrary harmonic function. The formulas of Hooke's law then give us the
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Infinite elastic cylinder torsion 629

following expressions for the streases T"P and T(p::

%% 1 988 0%
Trfo:G[ﬁ_—r_Fr—]' rW:GW (1.3)
We take the harmonic function & in the form of an improper integral,
+00
§ = g Iy (Ar) (A, (&) sin Az + A, (A) cos Az] dA (1.4)

0
where 4, (A) and 4, (A) are unknown functions that must be determined from the boundary

conditions of the problem; /o (Ar) is a modified Beasel function of zero order. Substitut-
{og (1.4) into (1.2) and (1.3), we obtain

+00

= S M, (Ar) [4; (M) sin Az + 4, (A) cos Azl dA

=

+00

Tro = G S A, (Ar) [4, (A) sin Az + 4, (A) cos Az) dA (1.5

0
+oo

To = G S AT, (A1) [4, (A) cos Az — A, (A) sin Az] dA

0

where I, (Ar) and I, (Ar) are Besael functions and G is the shear modulus. Formulas (1,5)
will be used below to solve boundary value problems on the torsion of an infinite circular
cylinder.

2. Method of differentiation of the boundary conditions. Let us consider the mixed
problem of elasticity theory for a symmetrically loaded solid of revolution or for a solid in
a state of plane deformation or plane stress. Let the elastic solid under consideration be
bounded by the surface S. We assume that on some portion S, of the surface S we are given
a boundary condition for the projection of the displacement vector. We denote this project~
ion by v. The process of solving mixed boundary value problems of elasticity theory can be
simplified substentially in some cases if the boundary condition for v is replaced by a
boundary condition for the partial derivative along the tangent. The boundary condition for
v is satisfied to within a constant with the aid of the boundary condition for the partial
derivative. Hence, the boundary condition for the partial derivative must be combined with
a condition for v at some point of the area So. As the supplementary condition one can
stipulate that the principal vector and the principal moment stresses applied to the area S,
are equal to certain given values.

This method will be used in the solution of the boundary value problems considered
below.

3. Representation of the solution of two types of dual integral equations. The boundary
value problems to be considered are reducible to the following dual integral equations :
+00

S M—gMIfA)sindzdh=F,(z) (0<z<a) (3.1)

0
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+00

S f(A)coshzdh=F, (2) (@<z<+ o)

0

where f (A) is an unknown function, and g (A), F, (2), and F, (z) are given functions. We
assume that the function g (A) has the following property: it is continuous in the interval
0 <A <+00, the product A g (A) as A -+ 0 is finite, and there exists an O such that

limA? [Ag (M) —a]l =0 O<p<Y) (3.2)
A—00

The above condition will henceforth be referred to as ‘Condition A'. The function

F, (z) is assumed representable by means of a Fourier integral.

400 +o0
F,(2) = S fo ) coshzdh,  fy (h) = — S F,(2) cos hzdz  (3.3)
0 a

By introducing the new unknown function

L) =fR)— Q) (3.4)

we see that by virtue of (3.3) equations (3.1) may be reduced to

+oo
& M—g@®)]f,(\)sinhzdh =F(2) (©O<z<a)
0

(3.5)
=00
{h®cosizair =0 (a<icte
0
where
oo
F(2) = Fy (2) — S 1 — g (M)] f, (A) sin AzdA 3.6)
0
We seek a solution of the dual integral equations (3.5) in the form
a
0y =\re @) 75 () at @.1)
0
where @ (#) is the new function sought. Then by virtue of the integrals
© 0 if
. . y 1 z <1
S) Jo (M) sin hzah = { AP
* hoi (3.8)
-— (t2 - 22)" /’) if 0< z < t
S Jo (A2) cos Az dA = { & L oS

0

the second equation of (3.5) is satisfied identically. Following the procedure employed in
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[1] we rewrite the first equation of (3.5) as

+c0
g fL)sindzdh =Fy(2) (O<s<a) (3.9)

0
where
-+co

Fy(z) =F (2 + S g (M) f, (A) sinAzdh (3.10)

=

Assuming the right-hand side of equation (3.9) to be a known function, we substitate
into it function (3.7) and once again make use of integral (3.8). Equation (3.9) is thereby
reduced to the Schloemilch equation [2]

z

2 (thodt _ 2
TS e = R Fy(2) (0<z<a) (3.11)
[1]
whose solution is of the form
Y7
2 P
v 0= (7,0 + ¢ 3, Py (¢ sin 0) df] (3.12)

Substituting (3.10) into (3.12) and applying the equation

'/:"

Jo (M) = = S cos (At sin 6) db
we obtain 0
400
Q@) =" g Ag (), (A T, (At) dh + x, (2) (3.13)
where 0
7
%0 =~ i/? [F ©) + ¢ So F’ (¢ sin 6) de] 510

Further, substituting (3.7) into (3.13) we obtain an integral equation that may be used
to find @ (¢),

o0 =Kt ve@dr+10 (3.1

where
<400

K@ 1) =()" S g () Jo (M) T (A1) dA

0

(3.16)

We combine the resulting solution (3.7) of the nonhomogenecus equations (3.5) with
the solution of the homogeneous equations. We attempt to find a solution of equations (3.5)

for F (z) =0 of the form
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f () = ColJ (Aa) + f3 (V)] (3.17)

where C, is an arbitrary constant and f; (A) is an unknown function. Substituting (3.17)
into (3.5) we see that the function f, (A) must satisfy the nonhomogeneous equations (3.5)
with the right-hand side

+o0

Fo@ = { g®)J, (aa) sin Az dh (3.18)
Hence 0
fa ) = {90 (0 7o (A1) a oo
0

where Qg (¢) is found from the integral equation (3.15), (8.16) with absolute term (3.14),
where the function F (s5) must be replaced by function (3.18). Thus, by virtue of (3.4),
(3.7), (3.3), (8.17), and (3.19), the solution of the initial integral equations (3.1) is given
by the formula

(3.20)
a “+co

1) = Coly (Aa) + [ I (&) + Cupo 175 () dt + 5 | Fol) cos Az dz
0 a

where the functions @ (s) and (o () are found from the integral equation (3.15), (3.16). The
absolute term X (¢) of equation (3.15) for finding the function @ (¢) is given by formulas
(3.14) and (3.16) ; the absolute term X (#) for finding @, (¢) is given by formula (3.14),
where the function F (z) must be replaced.by F, (z) as obtained from formula (3.18).

It can be shown that if the function g (A) possesses the property A, the kernel (3.16)
is a function summed with a square in the rectangle 0 < ¢ < a, 0 1 < a. In addition, it
is a function continuous in the large [3]. If @ = 0, then the kernel (3.16) is continuous on
the aforementioned rectangle. Hence, if the functions F, (3) and F, (z) are such that the
absolute term X () is a function summed with a square on [0, a ], then equation (3.15) is
a Fredholm integral equation of the second kind with a symmetrical kernel. If X (¢) is
continuous in the interval [0, a], the solution of integral equation (3.15) is continuous in
that interval [3]. If g (A) pessesses the property A and the solution of integral equation
(3.15) is a function of restricted variation, it can be shown* that all operations invelving
alteration of the order of integration, taking of limits, and differentiation under the integral
sign carried out above are valid, and that the solution of the Schloemilch integral equations
(3.11) has a continuous derivative [2] on [0, a].

We might point out that a formally different representation of the solution of non-
homogeneous dual integral equationa (3.1) is given in [4, 5] for the case F,(z) = 0.

The dual integral equations

* The proof is omitted in view of its cumbersome character.
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o0
g U —gMIAf (M) cosrzdh =D (2) (0<:<a)

0
00

g f () coshzdh = F, (2)  (a<z<+ )

0

may be reduced to integral equations (3.1) considered above by formally integrating the

first equation from O to z and introducing the notation

¥4

gcb ) dt = F, (2)
0

We next consider some dual integral equations of the second type,

00
\ M—g@/Msindzdh =F, () (0<:<a)

0
(3.21)

o0
(4 @sinrzdh = Fi(d) (a<z<+e)
0

By similar reasoning we deduce that the solution of these equations is given by the

formula +
a 00
1 2 i
£y =\ ¢he 07y () di + | Fa(2)sin hads 5.2
R a

where the function @ (¢) is found from an integral equation with a symmetrical kernel,

9 @)= SK ¢, Ve (r)dv + % (1) 0<t<a) (3.23)
1 e
K (1= @0" | ag () 7, 0v0) 7o () dh (3.2

0

_ 2 2\ 0,
x<t)—“—1—,—;0(t)+(;) t Sx g M () J, (M) dh  (3.29)

1]

2\, e .
M@= (2)"2" | Fy (9 sinrzdz (3.26)
¢ () =lim 71 () — (%)/ gmx‘/-M (3 sin Azdh] + (8.97

0
-+oo

+ ti(zﬂ— 2L [P () — (2)" { M) "";;' an]ds
Q 0
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If g (A) posseases the property A and the functions F, (z) and F,(z) are such that the
absolute term (3.25) is a function summed with a square in [0, al, then equation (3.23) is a

Fredholm equation.
A special case of dual equations (3.21) is considered in [6].

4. The first problem of a cylinder in torsion. Symmetrical case. Let us consider a
mixed boundary value problem on the symmetrical torsion of an elastic cylinder

0<r<R, —o0< z< + oo (Fig. 1.

We are given the displacement v (R, 1) in the interval — a <x<g of the side
surface r = R and the tangential stresses Tr(P(R’ z) on the remaining portion of the side
surface of the cylinder. The general torsion problem we are about to consider is a com-
bination of two special cases: 1) symmetrical loading of the side surface relative to the

plane z = 0 (Fig. 1); 2) antisymmetrical loading relative to the plane z = 0.

We first solve the problem for the
symmetrical case, mathematically formul-

ated as follows: we are required to find

the function v (r, 2} which satisfies the

differential equation (1.1) inside the
cylinder 0 7 <R, = 00 < z <+ o0 and the

conditions

v=19(z) for r=R, —a<z<a 4.1

T"‘P=Q(z) for T=H, alz|<{+ o (4.2)

on its surface.

Y/ (2) and ¢ (2) in these expressions are even functions ; the projection of the moment
on the z-axis must equal zero
400
4nR? S Tro (R, 2)dz =0 4.3)
0
If the cylinder is fixed in the interval — a < g <a of the side surface, then ¢/ (z) = 0.

The function g (z) is considered representable as a Fourier integral,

~}-00 “+c0
q(2) = g g () coshzdh, g (A) = = % g (z) coshzdz (4.4)
a a

We attempt to solve the problem posed in the form of formulas (1.5), setting
4, =0 4.5)

Instead of boundary condition (4.1) we consider the boundary condition for the partial

derivative
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ov/0z=2vy(2) for r=R —a<ls<a (4.6)

Satisfying boundary conditions (4.6) and (4.2), we obtain the following dual integral

equations in the function 4; (A):

400
S MA, () I, AB) sinAzdh =¥’ () (0<:<a)

0

+oo 1 (4.7
g A14, (0) I, AR) cosAzdh = -4 (8)  (a<s<+ )
0
If we set
’ 1
40) =i, F@=v0, FRE=¢¢0
I; (AR) _ I (AR) (4.8)
1—g@) = Iz(m) ’ g =1~- l;(A.H)

equations (4.7) reduce to the form (3.1). Hence, by virtue of (3.20), their solution is given
by the formula

4, 0) = gz (€0 0) + {10 ) + Copo 0176 A0 dt + 2 W)} )

0

where @ (¢) and @, (t) are found from integral equation (3.15), (3.16) and (3.14). The
function F (2) appearing in the expression for the absolute term (3.14) for finding @ (¢) has
the form

400

F@)=v (9 — S %%;%fz () sin AzdA
0

for finding @y (¢) it may be written as

400
F () = S g (\) J,o (Aa) sin Az dA

0

where g (A) is given by formula (4.8), and

+o0
o) = {g@ooshzds <A<+ 410
It is easy to show that

[fe ) +55]=0  ©<r<t

i.e., the function g (A) possesses the property A. Thus, the kernel (3.16) in this problem

4 .
limig A) = — =, lim AP
;_rgg() R A0
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is a Fredholm kernel.

Let us find the distribution of the stresses 7, o on the fixed segement — a <z <a
of the side surface. By virtue of (4.5), expressions (1.5) yield
+00
%re (R, 2) = G \ 224, (\) I, (AR) cos Az d\ (4.11)
)
Substituting (4.9) into (4.11) and making use of integral (3.8) and the inversion formula
for (4.10), we obtain

a

c Y5 (@ ()4 CoPo ()] 5.)
'r,.,(R,z)=G{Va_.°___z_’+S‘ W“)ﬁi__“z?”] df  (—a<i<a) 412

Hence, the shear stresses on the fixed portion of the side surface may be expressed
directly in terms of the functions @ (¢) and @ (¢). Clearly, the shear stresses 7, i, become
infinite at the points x = 1 g of the side surface. Their distribution law is close to the
distribution law for normal stresses under a die [7].

In order to complete the solution of the problem, we must determine the constant C,.
We can find it using equilibrium condition (4.3), which together with boundary condition
(4.6) is equivalent to boundary condition (4.1). Substituting (4.12) and (4.2) into (4.3) and
computing the integrals, we obtain

Co[1 + §t"-«po (t) dt]= — S i (@) dt — onke (M,,=4uR’+§° 2(2)ds)

0 0

where M, is the torsional moment comprised of external stresses (4.2) applied to the side
surface of the cylinder.

3. The first problem of a cylinder in torsion. Antisymmetrical problem. Let us write
out the boundary conditions of the problem, assuming that the segment — a < z < a of the
side surface is fixed (Fig. 2):

v=0 for r=R, —a<z<a
rrwze(z) for r=R, a<|z|<+oo

(s.1)
(5.2)

where F, (2) is an odd function. The shear
stresses applied to the segment of the

side surface extending from a to + o

produce the torsional moment

My = 2nR? S F,(2) dz

a

The fanction F, (2) is assumed to be representable as a Fourier integral,



Infinite elastic cylinder torsion 637

~+oco +o0
‘ 2 .
F,(z) = S fo()sindzdh, £, () == S Fy(s)sinhzdz (g4
(1] a
Clearly,
oo
X f, (A) sin AzdA = 0 0< < a) (5.4)

0
We attempt to solve this problem in the form of formulas (1.5), where we set

A, (A =0 (5.5)

Satisfying boundary conditions (5.1) and (5.2), we obtain dual integral equations in
the unknown function 4, (A),

o0

g A, (M) I, MR) sinAzdh =0  (0<z<a)

0
e (5.6)
G S MA, (A) I, AR) sin Azdh = F, (2)  (a<<z< + o)

0

If we set

F(A) I (AR) _
A'l (}") = Gnla R’ T:(AR) =1 g 0") (5.7)

equations (5.6) are reduced to the form (3.21) for F, (z) = 0. By virtue of (3.22), their
solution is therefore given by the formula
o0
1 .
e/ (5.8)
4,00 = G [St p (1) 7o (M) dt + = S F,(2)sin Azdz]

a

where @ (¢) is found from the integral equation (3.23), (3.24), and (3.25). Since the function
g (A) given by formula (5.7) coincides with function (4.8), kernel (3.24) is a Fredholm
kernel.

Let us find the distribution of shear stresses T, o8 the fixed segment 0 L 2 <a

of the side surface. To this end, we transform expression (5.8) using (5.3) and the formula

1. dJy (A.l)

To (M) = + 5 A

We obtain

1 1
4, M) = gt omy {0 @)/, () — =9
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a

— [ 0 — g e O] 00 e + 1,0 (5.9
0

Substituting (5.9) into expression (1.5) for T, ? and taking into account (5.4) and (5.5),

we obtain

-, pd
e ) =22 (o () — I ()] =,  0<:<0)

P - tyn—n

where we have made use of the integral

2 (B —2) 7t 4 0Lzt
0, i t<Ca 4 oo

Clearly, the shear stresses become infinite at the point z = t a of the side surface.

+o00
S J; (M) sin Azd) = {

0

6. The second problem of a cylinder in torsion. Symmetrical case. Let the shear
stresses 7, (R, 3) be given on the segment — a < z < a of the side surface of the cylinder
(Fig. 8); the displacement v (R, £) is given on the remaining portion of the side surface.

In the general case this problem is a combination of the symmetrical and antisymmetrical
cases of loading of the side surface relative to the plane z = 0.

The boundary conditions for the symmetrical case may be written as

Tro =¢q () for r=R, —alz<la (6.1)
U=Fa (z) for r=R, a<|z|<+ o0 (6.2)

where g (1) and F, (z) are even functions. The projection of the moment on the z-axis must

equal zero,
—+o0

4nR® S %o (R, 2)dz=0

0

The function F, (z) is considered to be representable as a Fourier integral,

+00 —+00
Fy(z) = S fGycoshzdh,  fy(A) = = S F,(2)coshzdz  (6.3)

We attempt to solve the problem in the form of formulas (1.5), where we set 4, (A) = 0.

Satisfying boundary conditions (6.1) and (6.2), we obtain dual integral equation for

finding the unknown function 4, (A),
+o0
G S MA, (W), AR)cosAzdh=q(2)  (0<z<a)
o
T (6.4)
AAs (M) I (AR) cos Az dh = Fy (2) (a <2<+ o)

S
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By integrating the first of these equations from 0 to z and setting

A Is(AR i
0= i eW=1—7G. FE=7li@e 69
0

we reduce equation (6.4) to the form (3.1). Their solution is given by formula (3.20).

Setting Co = 0 in formula (3.20), we obtain the following expression for the solution
of equations (6.4) :

a +o0
1
A4, () = AL (ME) {S the (8) T o (At) dt + -,%— S F,(2) cos }.zdz} (6.6)
0 a

where @ (t) is found from integral equa-

tion (3.15), (3.16), and (3.14). The func-
tion F (z) appearing in the absolute term
(3.14) may be writien as

where f, (A) is given by formula (6.3).

It is easy to show that

- I im AP ~3 = 0 1
limAg ()= 3, lim ¥[e®)—5p]=0  O<p<Y)

i.e., the function g (A) possesses the property A. Kernel (3.16) in this problem is therefore
a Fredholm kernel.

Let us find the distribution of shear stresses on the side aurface in the case where the
side surface outside the segment — a < 1 < g is fixed. In this case F, (2} = 0, and by vintue
of the identity

M0 =20 4 2 )

formula (6.6) is easily reduced to the form

43 () = g3y 1970 @)1 () + @4 ()] @7

where e

0. 4) = { {70 ) — [P (1), (M)
0
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Substituting (6.7) into expression (1.5) for Tr(p' we obtain

-+00
_ Ga’/'q) (a) R Ik
Y e e TP i § g (M) Af (M) cos AZdM +

(O — 1900 3 (o +o0)
+6\ v e e

0

where we have used the integral

+oo
\ - ! 0Lt < 2)
0& Ty (M) coshadh = — e O<t<z

The functions g (A) and f (A) are given by formulas (6.5) and (6.6).

7. The second problem of a cylinder in torsion. Antisymmetrical case. The boundary
conditions of this problem may be written as (Fig. 4)

T =¢q(2) for T=R, —alz<a (7.1

v=~h(z) for r=R,a|zi<H o0 7.2)

where g (z) and A (z) are odd functions. We assume that the derivative A* {z) = F, (z) is

representable as a Fourier integral,

-+o0
B (2) = F,(z) = S £, () cosAzdA,

o0
fo(A) = % S h' (z) cosAzdz

a

(7.3)

T I TIT Y

FIG. 4

We attempt to solve this problem in the form of formulas (1.5), where we set

Instead of boundary condition (7.2) we consider the boundary condition for the partial
derivative
P W ()=F,(9 for r=R a<jz]<+oo (7.4)

and the additional condition

v = (R, z0) = h(z) (z20>a) (7.5)

which consists in the equality of the displacement v (r, z) being sought to its given value
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at some point zo > a of the side surface r = R. Conditions (7.4) and (7.5) are clearly
equivalent to boundary condition (7.2).

Satisfying boundary conditions (7.1) and (7.4), we obtain dual integral equations for
finding the unknown function 4, (A),

+
G S MA, (M I,(AR)sinAzdA =g (z) (0<:<a
o 0
S A4, (M I, (AR) coshzdh = F,(z)  (6<:<+ )
(1]

These equations may be reduced to the form of equations (3.1) by setting

A I3 (AR 1
40 = Pim=1—g®), TI@=F( 08

For this reason their solutien (by virtue of (3.20), (7.4), and (7.3)) is given by the

formula
a

1 1
41 () = gy (€0 0a) + {24 9 (1) +Copo 01/, 0 dt + 1,0 } (7.9
0
where C; is an arbitrary constant. The functions @ (¢) and @, (¢) are found from integral
equation (3.15), (3.16), and (3.14). The function F (z) appearing in the expression for the
absolute term (3.14) for finding @ (¢) may be written as

o0
F@ =@~ | 298 1, ()sindza
0

for finding Po (¢) we have the expression
oo
F(z)= S g (A)J, (Aa) sin Azd), F0)=0
0
where g (A) and f; (A) are given by formulas (7.6) and (7.3).

The functions g (A) as expressed by formulas (7.6) and (6.5) coincide. This means
that kernel (3.16) of integral equation (3.15) in this problem is a Fredholm kernel.

The constant Cy may be determined from condition (7.5). Substitating the value of
A, (A) given by formula (7.7) into expression (1.5) for v (¢, z), and then v (r, z) into equa-
tion (7.5), we obtain the following expression for C,:

C, [1 + § e, (£) dt] = -
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a

400
=2 h(z)— St‘/'q) (0 dt — = S A-1f, (A) sinAz,dA (7.8)
0

where we have used the integral
400
S AV, (M)sinhzdh =% (0<t<z)
0

Any number larger than g can be taken as z in formula (7.8).

Let us quote the formula for the distribution of shear stresses on the segment
a < x <+ 0 of the side surface of the cylinder for the special case of the boundary condi-

tions of the problem being considered. Namely, let

ho, if a<z<{+ oo
h(z)={—ho, if —olzL—a

It is then easy to show that

_ GG C 19 () + Coo (8)]
Tro (R, z)—,,z+_a,+6‘§ Vo—a dt—
-0
—G S g F(A)sinhzdh  (a<z <+ )

0

where f(A) and C, are given by formulas (7.6), (7.7), and (7.8), where
fa) =0

We note in conclusion that the same method may be used to solve analogous problems
involving the torsion of a hollow cylinder.
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